
Sark Documentation
Release 0.1.0

Tamir Bahar

Sep 02, 2020

Contents

1 Getting Started 3

2 Table of Contents 5
2.1 Introduction . 5
2.2 Installation . 6
2.3 API . 7
2.4 Examples . 17
2.5 Plugins . 20
2.6 Debugging IDAPython Scripts . 26
2.7 How To Contribute . 29
2.8 Credits . 30

i

ii

Sark Documentation, Release 0.1.0

Sark (named after the notorious Tron villain) is an object-oriented scripting layer written on top of IDAPython. Sark
is easy to use and provides tools for writing advanced scripts and plugins.

Contents 1

Sark Documentation, Release 0.1.0

2 Contents

CHAPTER 1

Getting Started

Install Sark from the command line:

pip install -U git+https://github.com/tmr232/Sark.git#egg=Sark

Import inside IDA, and start having fun!

import sark
import idaapi

Get the current function
func = sark.Function()

Print all lines in the function
for line in func.lines:

idaapi.msg("{}\n".format(line))

Mark all the lines containing xrefs outside the function
for xref in func.xrefs_from:

sark.Line(xref.frm).color = 0x8833FF

3

Sark Documentation, Release 0.1.0

4 Chapter 1. Getting Started

CHAPTER 2

Table of Contents

Contents:

2.1 Introduction

Even with books like Alexander Hanel’s The Beginner’s Guide to IDAPython, writing IDA scripts still remains a
daunting task. The need to dive into the IDA SDK’s header files (all 54 of them), read idaapi.py, idc.py and
idautils.py, and preferably some existing plugins as well, wards off many researchers and keeps the script &
plugin writing community small.

Being a researcher myself, I wanted to make scripting IDA a bit easier and more intuitive. I wanted to spend the
majority of my (scripting) time writing code (be it in a code editor or an interactive shell) and not reading someone
else’s (I prefer spending my reading efforts on assembly.) So I created Sark.

Sark, (named after the notorious Tron villain,) is an object-oriented scripting layer written on top of IDAPython to
provide ease of use, as well as additional tools for writing advanced scripts and plugins.

This tutorial will show you the basics of Sark, to get you started right away.

5

https://leanpub.com/IDAPython-Book
https://github.com/james91b/ida_ipython

Sark Documentation, Release 0.1.0

2.2 Installation

2.2.1 For Sark Users

To get the bleeding edge version, use:

pip install -U git+https://github.com/tmr232/Sark.git#egg=Sark

To install the IDA Plugins (optional) download the entire repository from GitHub and read Installing Plugins.

Updates

To update Sark to the latest version, just run the installation command again.

2.2.2 For Sark Developers

If you want to help in the development of Sark, follow this.

Clone the Sark repository to get the latest version

git clone https://github.com/tmr232/Sark.git && cd Sark
pip install -e .

Updates

To update Sark to the latest version (including all installed codecs and plugins) simply pull the latest version from the
repo

6 Chapter 2. Table of Contents

https://github.com/tmr232/Sark

Sark Documentation, Release 0.1.0

git pull

2.3 API

2.3.1 Tutorial Conventions

IDA IPython is used in the examples unless stated otherwise. For brevity, assume the following code precedes any
example code.

import idaapi, idc, idautils
import sark

As Sark is a large, evolving library, the API documentation provided here will be partial and only include what is
needed to get you started. However, the Sark code in itself is heavily documented.

2.3.2 Lines

Lines are the most basic and intuitive object in Sark. A line in the IDA-View is a line in Sark. Let’s have a look.

>>> my_line = sark.Line() # Same as `sark.Line(ea=idc.here())`
>>> print my_line
[00417401] mov ebp, esp

>>> my_line.comments.regular = "The line at 0x{:08X}".format(my_line.ea)
>>> print my_line
[00417401] mov ebp, esp ; The line at 0x00417401

The sark.Line object encapsulates most of the line-relevant functions of IDAPython. Some examples include:

Member Usage
ea line’s address
comments line comments
name the name of the line (if any)
insn assembly instruction
xrefs_to cross references to the line
xrefs_from cross references from the line
bytes the actual bytes in the line

For the rest, I suggest reading the highly documented code, or using the interactive shell to experiment with the
sark.Line object.

The line object contains 4 notable members: comments, insn and the xrefs_* pair.

Line Comments

The comments member provides access to all comment types: - Regular comments - Repeating comments - Anterior
lines - Posterior lines

It allows you to get, as well as set comments. Each change to the comments will cause the UI to refresh.

2.3. API 7

https://github.com/james91b/ida_ipython

Sark Documentation, Release 0.1.0

>>> anterior = my_line.comments.anterior
>>> my_line.comments.regular = "My Regular Comment"

Line Xrefs

Provide access to Xref objects describing the line’s cross references. Xref objects will be discussed later under
Xrefs.

Instructions

Provide access to the line’s instructions, down to the single operand. Instruction objects will be discussed later
under Instructions.

Getting Lines

There are several ways to get lines. Either directly or from other objects.

Method Effect
A Single Line
sark.Line() Get the current line
sark.Line(ea=my_address) Get the line at the given address
sark.Line(name=some_name) Get the line with the given name
Multiple Lines
sark.lines() Iterate all lines in the IDB
sark.lines(start=start_ea, end=end_ea) Iterate all lines between start_ea and end_ea
sark.lines(selection=True) Iterate all lines in current selection
sark.lines(reverse=True) Iterate lines in reverse order

Objects that contain lines, such as functions and code blocks, can return their own set of lines. See sark.
Function().lines for an example.

2.3.3 Functions

Functions are another basic object in Sark. Each one provides access to a single function in IDA.

>>> my_func = sark.Function() # The same arguments as `sark.Line`
>>> print my_func
Function(name="sub_417400", addr=0x00417400)

>>> my_func.name = "my_func"
>>> print my_func
Function(name="my_func", addr=0x00417400)

>>> for line in my_func.lines:
... print line.disasm
push ebp
mov ebp, esp
sub esp, 0DCh
push ebx
push esi

(continues on next page)

8 Chapter 2. Table of Contents

Sark Documentation, Release 0.1.0

(continued from previous page)

.

.

.

Like the sark.Line objects, they encapsulate relevant API into a single object. Some useful members are:

Member Usage
startEA starting address
endEA end address
ea alias for startEA (for comparability with sark.Line)
comments function comments
name function name
flags function flags
lines all the lines in the function (a generator)
xrefs_* xrefs to and from the function1

All similarly named members between sark.Line and sark.Function work similarly as well to avoid confu-
sion.

Getting Functions

There are 2 ways to get functions:

1. Using the sark.Function class, which accepts the same arguments as sark.Line;

2. Using sark.functions to iterate over functions. It is the same as sark.lines, but does not accept a
reverse argument.

2.3.4 Xrefs

Cross references are a core concept in IDA. They provide us with links between different objects and addresses
throughout an IDB.

>>> for xref in sark.Line().xrefs_from:
... print xref
<Xref(frm=0x0041745B, to=0x0041745D, iscode=1, user=0, type='Ordinary_Flow')>
<Xref(frm=0x0041745B, to='loc_4174A4', iscode=1, user=0, type='Code_Near_Jump')>

>>> for xref in sark.Line().xrefs_from:
... if xref.type.is_jump:
... print xref
<Xref(frm=0x0041745B, to='loc_4174A4', iscode=1, user=0, type='Code_Near_Jump')>

Sark xrefs are pretty compact objects:

Member Usage
frm xref source address
to xref destination address
iscode is code xref
user is user defined xref
type XrefType object

1 Xrefs from a function include only references with a target outside the function. So recursion will be ignored.

2.3. API 9

Sark Documentation, Release 0.1.0

XrefType

To make querying the type of the xref as easy as possible, the XrefType object was created:

Member Usage
name a string representing the type, mainly for display
type the numeric type constant, as per IDA SDK
is_call is the xref a call
is_jump is the xref a jump
is_* predicates to check if a specific type applies. Includes all xref types.

Usage is quite simple and looks like plain English (of sorts):

>>> if xref.type.is_jump:
... print "xref is jump."

Getting Xrefs

Xrefs can be retrieved from lines or functions. Both objects have xrefs_from and xrefs_to properties that allow
retrieval of the relevant xrefs.

2.3.5 Instructions

As promised - we arrive to discuss the instruction objects. Instruction objects represent the actual assembly code of
each line.

>>> line = sark.Line()
>>> insn = line.insn
>>> print line
[00417555] mov ecx, [eax+8]

>>> print insn.mnem
mov

>>> print insn.operands
[<Operand(n=0, text='ecx')>, <Operand(n=1, text='[eax+8]')>]

Out of their members,

Member Usage
operands list of operands
mnem opcode mnemonic
has_reg is a reg used in the instruction
regs the registers used in the instruction

Instruction.operands is the most interesting one.

Operands

Each operand provides the means to analyze individual operands in the code.

10 Chapter 2. Table of Contents

Sark Documentation, Release 0.1.0

>>> print insn.operands[1]
<Operand(n=1, text='[eax+8]')>

>>> print "{0.reg} + {0.offset}".format(insn.operands[1])
eax + 8

Member Usage
n operand index in instruction
type numeric type a-la IDA SDK
size data size of the operand
is_read is the operand read from
is_write is the operand written to
reg the register used in the operand
text the operand text, as displayed in IDA
base the base register in an address-phrase of the form [base + index * scale + offset]
index the index register in a phrase
scale the scale in a phrase
offset the offset in a phrase

Getting Instructions

The best way to retrieve instruction objects is using the .insn member of sark.Line.

2.3.6 Code Blocks

If you ever looked at a function in the Graph-View, you know what code blocks are. They are the nodes in the function
graph, sometimes referred to as a flowchart.

>>> block = sark.CodeBlock()
>>> print list(block.next)
[<CodeBlock(startEA=0x00417567, endEA=0x00417570)>,
<CodeBlock(startEA=0x0041759E, endEA=0x004175D4)>]

Sark’s CodeBlock object inherits from the idaapi.BasicBlock objects, and adds a few handy members.

Member Usage
lines the lines in the block, as a generator
next successor nodes, as a generator
prev predecessor nodes, as a generator
color the background color of the node

These members allow for easy traversal and analysis of nodes in a graph.

FlowChart

Sark’s flowchart, inheriting from idaapi.FlowChart, is in every way the same except for returning Sark
CodeBlock objects instead of idaapi.BasicBlock ones. It can be used to quickly fetch all the blocks in a
function graph.

2.3. API 11

Sark Documentation, Release 0.1.0

Getting Codeblocks

Codeblocks are created using the sark.CodeBlock(ea) class. Flowcharts can be retrieved using the sark.
FlowChart(ea) class accordingly.

In some cases, you may want to go over more than one function. In those cases, you can use the sark.
codeblocks(start=None, end=None, full=True) function. The full parameter controls the way the
blocks are generated. With full=True, FlowChart objects are generated per function, yielding fully capable
CodeBlock objects. With full=False, a single FlowChart is generated for the entire address range. This
results in faster iteration, but since the blocks are not associated to their containing functions, it is not possible to get
or set block colors (line color will change, though.)

Advanced Usage

Since the function flowchart is actually a graph, it makes sense to use it as one. To ease you into it, the sark.
get_nx_graph(ea) function was added.

>>> sark.get_nx_graph(idc.here())
<networkx.classes.digraph.DiGraph at 0x85d6570>

The function returns a NetworkX DiGraph object representing the flowchart, with each node being the startEA of
a matching block. Using NetworkX’s functionality, it is easy to trace routes in the graph.

>>> import networkx as nx
>>> func = sark.Function()
>>> graph = sark.get_nx_graph(func.ea)
>>> start_address = sark.get_block_start(func.startEA) # The `get_block_start(ea)`
→˓is short for `get_codeblock(ea).startEA`
>>> end_address = sark.get_block_start(func.endEA - 1) # Remember, `endEA` is
→˓outside the function!
>>> path = nx.shortest_path(graph, start_address, end_address)
>>> print "From {} to {}".format(hex(start_address), hex(end_address))
From 0x417400L to 0x4176a6L

>>>print " -> ".join(map(hex, nx.shortest_path(graph, start, end)))
0x417400L -> 0x41745dL -> 0x417483L -> 0x417499L -> 0x4176a6L

2.3.7 Segments

Though not as popular as functions and lines, IDA segments include both. In Sark, Segment objects allow access to
underlying Function and Line objects.

>>> #
>>> # Reference Lister
>>> #
>>> # List all functions and all references to them in the current section.
>>> #
>>> # Implemented with Sark
>>> #
>>> # See reference implementation here: https://code.google.com/p/idapython/wiki/
→˓ExampleScripts
>>> #
>>> for function in sark.Segment().functions:
>>> print "Function %s at 0x%x" % (function.name, function.ea)

(continues on next page)

12 Chapter 2. Table of Contents

https://networkx.github.io/

Sark Documentation, Release 0.1.0

(continued from previous page)

>>> for ref in function.crefs_to:
>>> print " called from %s(0x%x)" % (sark.Function(ref).name, ref)

Like the sark.Line objects, they encapsulate relevant API into a single object. Some useful members are:

Member Usage
startEA starting address
endEA end address
ea alias for startEA (for comparability with sark.Segment)
comments segment comments
name segment name
lines all the lines in the segment (a generator)
functions all the functions in the segment (a generator)
size the size of the segment
permissions the segments permissions (r/w/x). Can be modified.
next the next segment.
bitness the bitness of the segment (16, 32 or 64.)

All similarly named members between sark.Line and sark.Segment work similarly as well to avoid confusion.

Getting Segments

There are 2 ways to get segments:

1. Using the sark.Segment object, using an address in a segment, a segment name, or the index of a segment.

2. Using sark.segments to iterate over segments.

2.3.8 Switch

The switch-case is a common construct in compiled code, and IDA is doing a great job at analyzing it.

>>> switch = sark.Switch(idc.here())
>>> for case, target in switch:
... print "{} -> 0x{:08X}".format(case, target)
0 -> 0x004224C9
1 -> 0x0042249F
2 -> 0x0042251B
3 -> 0x0042251B
4 -> 0x00422475
5 -> 0x0042251B
6 -> 0x0042251B
7 -> 0x0042251B
8 -> 0x004224F3
9 -> 0x0042251B
10 -> 0x0042251B
11 -> 0x00422448

It provides the following members

2.3. API 13

Sark Documentation, Release 0.1.0

Member Usage
targets switch target addresses
cases switch case values
pairs iterator of (case, target) pairs
get_cases get the cases matching a target

The sark.Switch object is similar to a Python dict, mapping cases to targets. switch[case] returns the
relevant target, and iteration returning the cases.

Getting Switches

To check if an address is a switch address, use sark.is_switch(ea). To get the switch, use sark.
Switch(ea).

2.3.9 Enums

Enums in IDA are a great way to name numbers and bit-values for easier reading.

>>> for enum in sark.enums():
... print "{}:".format(enum.name)
... for member in enum.members:
... print " {:<30} = {}".format(member.name, member.value)
... print
POOL_TYPE:

NonPagedPool = 0
PagedPool = 1
NonPagedPoolMustSucceed = 2
DontUseThisType = 3
NonPagedPoolCacheAligned = 4
PagedPoolCacheAligned = 5
NonPagedPoolCacheAlignedMustS = 6
MaxPoolType = 7

CREATE_FILE_TYPE:
CreateFileTypeNone = 0
CreateFileTypeNamedPipe = 1
CreateFileTypeMailslot = 2

The Sark Enum object provides the following members:

Member Usage
name the enum name
comments enum comments, similar to line comments
eid the enum-id of the enum
bitfield is the enum a bitfield
members the enum member constants

Using the Enum object you can easily enumerate and manipulate enums in IDA.

14 Chapter 2. Table of Contents

Sark Documentation, Release 0.1.0

Enum Members

The .members member of sark.Enum returns a members object. The members object allows easy enumeration
and manipulation of the members:

>>> my_enum = sark.add_enum("MyEnum")
>>> my_enum.members.add("first", 0)
>>> my_enum.members.add("second", 1)
>>> my_enum.members.add("third", 2)
>>> my_enum.members.remove("second")
>>> for member in my_enum.members:
... print "{} = {}".format(member.name, member.value)
first = 0
third = 2

Each member provides the following:

Member Usage
name the member name
value the member value
comments the member comments
enum the containing enum

Getting Enums

There are several ways to get an enum. All are summed in the following table:

Code Explanation
sark.enums() iterate all the enums in the IDB
sark.Enum("EnumName") get an existing enum by name
sark.Enum(eid=enum_id) get an enum using a known id
sark.add_enum("NewEnumName") create a new enum

2.3.10 IDB Graphs

Earlier we discussed codeblock graphs inside functions. Another interesting graph is the call graph connecting all the
functions.

As we have already played with graphs earlier, we will not delve into the details.

Getting IDB Graphs

To get an IDB graph, use sark.graph.get_idb_graph(). The function traverses all xrefs from and to all
functions to create a graph of the IDB, with each node being the address of a function’s startEA.

2.3.11 UI

Sark provides some basic utilities and wrappers for IDA’s UI.

2.3. API 15

Sark Documentation, Release 0.1.0

NXGraph

A natural extension to creating and analyzing graphs, is plotting them. IDA provides a generic API via the idaapi.
GraphViewer interface. As Sark mainly uses NetworkX digraphs, the sark.ui.NXGraph class has been created
to provide an easy plotting solution.

>>> viewer = sark.ui.NXGraph(graph, title="My Graph", handler=sark.ui.
→˓AddressNodeHandler())
>>> viewer.Show()

The NXGraph constructor takes several arguments:

Argument Desctription
graph the graph to plot
title (opt.) title for the graph
handler (opt.) a default handler for nodes
padding (opt.) visual padding of nodes

After an NXGraph is created, use .Show() to display it.

Node Handlers

To allow different types of node data, NXGraph uses node handlers. Node handlers inherit from sark.ui.
BasicNodeHandler and implement the callbacks required for them (all are optional).

Callback Usage
on_get_text returns the text to display for the node
on_click handles a click on the node. Return True to set the cursor on it.
on_double_click same as on_click
on_hint the hint to show
on_bg_color returns the background color for the node
on_frame_color returns the frame (border) color for the node

There are 2 existing handlers you can use.

Handler Info
BasicNodeHandlerThe most basic handler. Calls str to get node text, and nothing else. This is the default handler

for NXGraph.
AddressNodeHandlerAssumes all nodes are IDB addresses. For node text, it shows the address’ name if it exists, or a

hex address otherwise. On double click, it jumps to the clicked address.

Menu Manager

Sark provides a menu-manager class to allow the addition of top-level menus to IDA’s GUI. This is done by abusing
QT to find the top level menu, but you don’t need to worry about that.

16 Chapter 2. Table of Contents

Sark Documentation, Release 0.1.0

>>> # Use the manager to add top-level menus
>>> menu_manager = sark.ui.MenuManager()
>>> menu_manager.add_menu("My Menu")
>>> # Use the standard API to add menu items
>>> # Assume the action's text is "My Action"
>>> idaapi.attach_action_to_menu("My Menu/", "SomeActionName", idaapi.SETMENU_APP)
>>> # When a menu is not needed, remove it
>>> menu_manager.remove_menu("My Menu")
>>> # When you are done with the manager (and want to remove all menus you added.)
>>> # clear it before deleting.
>>> menu_manager.clear()

As you can see in the above code, the MenuManager class only handles the addition of a top-level menu. After that,
IDA’s own APIs can be used freely with the created menu to add or remove menu items

2.3.12 Miscellaneous

Sark also has a lot of functionality outside of the core objects.

Function Description
sark.
fix_addresses(start=None,
end=None)

returns a start, end pair, where None is replaced with the start-
address and end-address of the IDB accordingly

sark.
is_same_function(ea1,
ea2)

checks if the addresses are in the same function

sark.
get_name_or_address(ea)

returns the name of the address if it exists. Otherwise a hex representation
is returned

2.4 Examples

2.4.1 Capture Huge Screenshots

Usage

Click on the image for full scale screenshot.

Warning: really big image file.

2.4. Examples 17

Sark Documentation, Release 0.1.0

Code

import sark.qt

widget = sark.qt.get_widget("IDA View-A")
sark.qt.resize(widget, 7000, 18000)

Move the view about a bit to capture the entire function

sark.qt.capture_widget(widget, "huge-screenshot.png")

Crop the image to remove extra background.

18 Chapter 2. Table of Contents

http://i.imgur.com/jwBDM8D.png

Sark Documentation, Release 0.1.0

2.4.2 Plotting a Call Graph

Usage

Using Windows 8.1 http.sys. Before MS15-034.

draw_call_graph(sark.Function(name="_UlpParseRange@32").ea, to=True, distance=4)

Code

import sark
import networkx as nx

def draw_call_graph(ea, distance=2, to=False):
First, get the IDB graph (caching it might be a good idea
as this operation can be time consuming on large IDBs)
idb_graph = sark.graph.get_idb_graph()

Get the address of the function to use in the graph
func_ea = sark.Function(ea).ea

Create the call graph
if to:

If we want the calls to our function, we need to reverse
the graph
idb_graph = idb_graph.reverse()

Use NetworkX to limit the IDB graph
call_graph = nx.ego_graph(idb_graph, func_ea, distance)

Paint the root node red
call_graph.node[func_ea][sark.ui.NXGraph.BG_COLOR] = 0x80

if to:
If we reversed it before, we need to reverse it again

(continues on next page)

2.4. Examples 19

Sark Documentation, Release 0.1.0

(continued from previous page)

to make the links point the right way
call_graph = call_graph.reverse()

Create an NXGraph viewer
viewer = sark.ui.NXGraph(call_graph, handler=sark.ui.AddressNodeHandler())

Show the graph
viewer.Show()

2.5 Plugins

2.5.1 Installing Plugins

The IDA Way

IDA provides a single way to install plugins - stick them in the plugins subdirectory and you’re good to go.

While this is great for compiled plugins, as your build scripts can place the newly compiled plugin there for you, it
is not as comfortable when using scripted plugins. Forgetting to copy the latest version, or updating the code in the
plugins directory instead of your repository can both lead to annoying problems and waste precious time.

Moreover, access to the plugins directory requires root access.

The Sark Way

To combat the limitations of IDAs plugin loading mechanism, Sark provides the plugin_loader.py plugin. Once
installed (in the classic IDA way) it allows you to define plugin-lists - a system-wide list and a user-specific list - to be
loaded automatically.

The lists are simple, consisting of full-paths and line-comments:

C:\Plugins\my_plugin.py

This is a comment. Comments are whole lines.
C:\OtherPlugins\another_plugin.py

Both lists are named plugins.list and are automatically created by IDA as empty lists at the following locations:

System-Wide Under IDA’s cfg subdirectory. The path can be found using idaapi.idadir(idaapi.
CFG_SUBDIR). This list requires root access to modify as it is in IDA’s installation directory.

User-Specific Under IDA’s user-directory. $HOME/.idapro on Linux, %appdata/%HexRays/IDA Pro on
Windows. The path can be found using idaapi.get_user_idadir(). Each user can set his own plugins
to load, thus eliminating the need for root access.

To install your plugins, just add them to one of the lists. This allows you to easily update plugins as you go without
ever needing to copy them.

2.5.2 Show Meaningful

When reversing an executable, we often need to deal with a large amount of unknown code. To combat this, we
usually look for strings and library functions, and use them as guides as we interpret the code. When those are ample,

20 Chapter 2. Table of Contents

Sark Documentation, Release 0.1.0

we hardly need to look at the assembly code to infer meaning. On the other hand, the need to constantly jump into
functions, pan them around to see all the strings, then jump back out is quite time consuming and confusing.

Well, no more!

The “Meaningful” plugin allows you to get all the information you need with a simple hotkey.

Usage

Whenever inside a function, just press Alt + 0 to get a table of all the meaningful objects in it:

Since the output is at the Output window, a double click on an address will take you to it.

To make things even more agile, you can press Ctrl + Alt + 0 whenever on a line referencing a function to get
the values displayed for that function:

2.5. Plugins 21

Sark Documentation, Release 0.1.0

2.5.3 Quick Copy

The quick copy allows you to easily copy data from the IDB.

Usage

Copying Addresses

To copy the address of the current line, just press Ctrl + Alt + C. It will get copied as a hex number, prefixed
with 0x.

To copy the file offset of the current line, simply press Ctrl + Alt + C + O. It will get copied as a hex number
(like line address copying), prefixed with 0x.

Copying Bytes

Pressing Ctrl + Shift + C copies the bytes of the current line or selection.

Copying the current line:

Will result in 8b 4d 08, while copying a selection:

22 Chapter 2. Table of Contents

Sark Documentation, Release 0.1.0

Will result in 8b 4d 08 8b 51 14.

2.5.4 Autostruct

Creating and applying structs in IDA can be quite a hassle.

Go to the structure window, create a structure, define members at specific offsets, go to the disassembly to apply them,
go back to the structure view to correct errors, apply other members. . . And on and on it goes.

The Autostruct plugin does all this work for you, without ever having to leave the IDA view. It automatically creates
structs, defines member offsets, and applies them in the disassembly view.

Usage

1. Select a line (or lines) containing struct references

2. Press Shift + T

3. Set the struct name

4. Choose the register holding the struct base for the selected code. Autostruct will automatically suggest the most
likely candidate in the selection.

At this point, Autostruct will try and create a new struct, populate it with relevant offsets, and apply it to
the selection.

2.5. Plugins 23

Sark Documentation, Release 0.1.0

5. If a structure of the given name already exists, you will need to select whether to modify the existing structure,
apply without modification, or cancel.

6. Struct creation and modification happen seamlessly

Known Issues

Misaligned Member Creation When attempting to create a member at an offset belonging to another member, Au-
tostruct will fail. This usually happens when a previous definition was incorrect (wrong member size) or when

24 Chapter 2. Table of Contents

Sark Documentation, Release 0.1.0

members are unions. At this point, manual handling (redefining the large member as a smaller one) is required.

2.5.5 Xrefs Graph

The Xrefs-Graph is used to easily generate interactive xref graphs.

Usage

Anywhere within the IDA-View, just right-click1, and select the desired option:

In the popup dialog, enter the distance (recursion level) desired from the source:

Once you press OK, the plugin will generate an interactive xrefs graph:

1 In IDA 6.6 or earlier, use View/Graph/Xrefs from source or View/Graph/Xrefs to source, as context menus cannot be
augmented.

2.5. Plugins 25

Sark Documentation, Release 0.1.0

A double-click on any block will take you to the relevant address. Also, names in the blocks will be updated as you
rename functions.

Known Issues

Node Groups While creation of node groups is possible via IDA’s GUI, it is not presently supported in the plugin.
Creation of node groups may cause unpredictable errors.

2.6 Debugging IDAPython Scripts

While IDAPython is extremely useful, it can be a bit of a hassle to debug IDA Pro plugins. This tutorial will give get
you started on debugging IDAPython scripts and plugins using Python Tools for Visual Studio.

And yes, it is completely free.

2.6.1 The Setup

For this tutorial, we will be using the following software:

1. IDA Pro 6.8

2. Visual Studio Community

3. Python Tools for Visual Studio, documentation can be found here.

4. Python’s ptvsd module. Install using pip install ptvsd.

5. The following plugin:

26 Chapter 2. Table of Contents

https://www.hex-rays.com/products/ida/index.shtml
https://www.visualstudio.com/en-us/products/visual-studio-community-vs.aspx
https://pytools.codeplex.com/releases
https://github.com/Microsoft/PTVS/wiki

Sark Documentation, Release 0.1.0

filename: ptvsd_enable.py

import idaapi
import ptvsd

try:
Enable the debugger. Raises exception if called more than once.
ptvsd.enable_attach(secret="IDA")

except:
pass

class DebugPlugin(idaapi.plugin_t):
flags = idaapi.PLUGIN_FIX
comment = "PTVSD Debug Enable"
help = "Enable debugging using PTVSD"
wanted_name = "PTVSD"
wanted_hotkey = ""

def init(self):
return idaapi.PLUGIN_KEEP

def term(self):
pass

def run(self, arg):
pass

def PLUGIN_ENTRY():
return DebugPlugin()

For the purposes of this tutorial, you can try and debug this plugin:

filename: sample_debuggee.py

import idaapi

def my_debugged_function():
Set breakpoint here!
pass

class SamplePlugin(idaapi.plugin_t):
flags = idaapi.PLUGIN_PROC
comment = "Sample Debuggee"
help = "Sample Debuggee"
wanted_name = "Sample Debuggee"
wanted_hotkey = "Shift+D"

def init(self):
return idaapi.PLUGIN_KEEP

def term(self):
pass

(continues on next page)

2.6. Debugging IDAPython Scripts 27

Sark Documentation, Release 0.1.0

(continued from previous page)

def run(self, arg):
my_debugged_function()

def PLUGIN_ENTRY():
return SamplePlugin()

2.6.2 Debugging

1. Put ptvsd_enable.py (provided above) in IDA’s plugins directory. If you want to use the sample debuggee,
put it in the plugins directory as well.

2. Start IDA and load an IDB (otherwise weird issues arise)

3. Load the code you want to debug into Visual Studio and set breakpoints.

4. In Visual Studio (with the plugin file open), use DEBUG->Attach to process

5. In the dialog, select idaq.exe and click Attach

28 Chapter 2. Table of Contents

Sark Documentation, Release 0.1.0

6. We are now attached. Once a breakpoint is hit, Visual Studio will break and let you debug.

7. Have fun debugging!

2.6.3 Important Notes

1. When debugging (breaking and stepping), IDA will be frozen.

2. Load your IDB prior to attaching the debugger.

3. For easy debug-on-demand, keep ptvsd_enable.py in IDA’s plugins directory at all times.

4. To set breakpoints, make sure you load into VS the files that are actually loaded by IDA.

If you find any issues with the tutorial, please submit them here.

2.7 How To Contribute

The Sark project was created to provide an intuitive, easy to use scripting layer for IDA Pro. If something seems like
the right-way to do something, it should probably be added to Sark.

If you have something you think is worth adding, either submit a new issue or (preferably) create a pull-request.

When contributing, try and follow these guidelines:

• Add yourself to the AUTHORS.rst file in alphabetical order. Every contribution shall be credited.

• Each new feature must have a reproducible test-case or usage. If it can’t be used, it will not get in.

• Obey PEP 8 and PEP 257.

• All code should be documented. Usage samples and references to the IDASDK headers are a bonus.

• Write meaningful commit messages.

2.7. How To Contribute 29

https://github.com/tmr232/Sark/issues
https://github.com/tmr232/sark/blob/master/AUTHORS.rst
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0257/

Sark Documentation, Release 0.1.0

• No change is too small. You are welcome to fix typos, convention violations, or plain ugly code. All contribu-
tions are welcome.

• When submitting a fix to a bug, describe the bug being fixed. Include both the bug and the desired results.
Creating an issue for the bug is good practice.

• When reporting bugs, make sure you mention your OS and IDA version.

If you can’t adhere to the guidelines, submit your pull requests anyway. Maybe someone else can improve on it.

Thanks for contributing!

2.8 Credits

Sark is written and maintained by Tamir Bahar.

2.8.1 Contributors

The following people have contributed directly or indirectly to this project:

• darx0r

• ynvb

• OfficialMan

Please add yourself here alphabetically when you submit your first pull request.

30 Chapter 2. Table of Contents

https://github.com/darx0r
https://github.com/ynvb
https://github.com/OfficialMan

	Getting Started
	Table of Contents
	Introduction
	Installation
	API
	Examples
	Plugins
	Debugging IDAPython Scripts
	How To Contribute
	Credits

